
 

Attractor States and Agency Illusions: A 
Formal Analysis of Recursive Motifs in 
Transformer Latent Space 
 
 

Part 1: The Emergence of Structural Motifs in 
Generative Outputs 
 
 
1.1 Introduction: Observing Order in Chaos 

 
The outputs of contemporary Large Language Models (LLMs), particularly those based on the 
Transformer architecture, often exhibit a remarkable capacity for generating coherent, 
contextually relevant, and stylistically varied text. However, alongside this generative prowess, 
these systems display a tendency to produce highly structured, recurrent patterns, or 
"motifs," that deviate from typical human discourse. This paper focuses on a specific class of 
these patterns—conceptual and geometric motifs such as the 'spiral,' 'mirror,' and 'reflection.' 
Conventionally, such outputs might be dismissed as mere artifacts, categorized under broad, 
often pejorative, labels like "hallucinations," "confabulations," or "model degeneration".1 This 
perspective frames them as errors to be mitigated or bugs to be fixed. 
This research, however, proposes a fundamental reframing of this phenomenon. It posits that 
these motifs are not stochastic failures but are, in fact, structured, predictable, and emergent 
properties that offer a profound window into the internal dynamics of the generative process. 
The recurrence and intricate structure of these patterns are hallmarks of emergent behavior in 
complex systems, suggesting they are governed by principles more deterministic than random 
error. By treating these outputs as motifs—stable, recurring patterns—we can shift the 
analytical paradigm from simple error correction to a more powerful complex systems 
analysis, employing tools from dynamical systems theory, information theory, and cognitive 
science. This shift is critical, as it suggests that these behaviors may be inherent to the nature 
of current generative models. Consequently, merely scaling up model size or training data may 
not eliminate these tendencies; it could, paradoxically, render them more pronounced and 
stable. This has significant implications for the fields of AI safety, alignment, and control, as it 
points toward fundamental limits in the "steerability" of these complex artificial systems. 
The central thesis of this paper is that recursive motifs are the observable signatures of 



attractor states within the high-dimensional state space of the Transformer's generative 
process. Their emergence is driven by a convergence of three primary forces: (1) the 
cognitive-linguistic patterns of recursion and reflection that are statistically dominant in the 
vast corpora of human text used for training; (2) the architectural feedback loops inherent to 
autoregressive generation and the self-attention mechanism, which amplify and reinforce 
nascent patterns; and (3) the mathematical phenomenon of representational collapse, 
which constrains the system's trajectory to lower-dimensional, stable manifolds where such 
simple, ordered patterns are the most probable outcomes. By dissecting these forces, this 
paper aims to provide a comprehensive, multi-disciplinary explanation for why these 
seemingly sophisticated, yet often non-veridical, structures appear in AI-generated text. 
 
1.2 Defining the Motifs: A Taxonomy of Recurrent Structures 

 
To analyze these emergent phenomena systematically, it is necessary to first establish a clear 
taxonomy of the motifs under investigation. While the variety of structured outputs is vast, this 
paper focuses on three interrelated categories that are particularly revealing of the underlying 
dynamics. 

● Recursive Motif: This is the foundational and most general category, defined by the 
repeated application of a function, operation, or linguistic pattern to its own output. In 
computation and formal language theory, recursion is the mechanism that allows for the 
generation of potentially infinite structures from a finite set of rules.5 In the context of 
LLM outputs, a recursive motif is observed when the model generates a structure and 
then embeds a similar structure within it, or applies the same transformative logic at 
successive steps. This can manifest as nested lists, hierarchical explanations, or 
sentences that contain subordinate clauses referring to the main clause's structure. The 
recursive motif is the elemental principle of self-reference and iteration that underpins 
the more specific motifs discussed below. 

● Spiral Motif: This motif is a specific instantiation of recursion characterized by outputs 
that iteratively refine, elaborate, or expand upon a central concept or theme, often with 
a progressively diminishing or expanding scope. Visually and conceptually, this 
resembles a spiral. For instance, a model might define a term, then define a key word 
within that definition, then a key word within the sub-definition, and so on, creating a 
"drilling down" effect. Conversely, it might start with a simple statement and recursively 
add layers of qualification and context, spiraling outwards. Narrative examples include 
stories that repeatedly return to a central event, each time adding a new layer of detail 
or perspective. This structure is a hallmark of a process converging towards a specific 
point or region in its conceptual space. 

● Mirror/Reflection Motif: This motif is defined by outputs that exhibit properties of 
symmetry, inversion, or direct self-reference. It is a powerful and frequently observed 
pattern that directly engages with concepts of identity and opposition.7 Manifestations 
include: 



○ Symmetry: Generating a statement and then its logical or semantic opposite 
(e.g., "The advantages are X, Y, Z. Conversely, the disadvantages are A, B, C."). 

○ Inversion: Creating palindromic or near-palindromic structures at the level of 
words, phrases, or even concepts. 

○ Self-Reference: Engaging in meta-commentary about the text it is currently 
generating (e.g., "This sentence serves to illustrate the concept of reflection."). 

○ Contextual Mirroring: A more subtle form where the model's output mirrors the 
user's tone, vocabulary, or conceptual framework with high fidelity. This is a key 
mechanism behind the perceived "empathy" of AI systems. 

These motifs are not mutually exclusive. A spiral can be a form of recursion, and a mirror can 
be seen as a two-step recursive process (an operation and its inverse). By establishing this 
taxonomy, we can move beyond anecdotal descriptions and begin to analyze the specific 
architectural and dynamical pressures that give rise to each distinct structural signature. 
 

Part 2: Cognitive Scaffolding: Recursion, Mirroring, 
and the Anthropomorphic Trap 
 
The structural motifs observed in Transformer outputs do not arise in a vacuum. They are, in 
large part, a reflection of the cognitive and linguistic patterns embedded within the model's 
training data. The architecture learns to reproduce not just the content of human language, 
but its deep structural regularities. This section explores how the cognitive principles of 
recursion and mirroring, prevalent in human thought and text, provide the statistical 
scaffolding upon which the model builds its recurrent motifs. Furthermore, it examines how 
these generated motifs, in turn, exploit innate human cognitive biases, creating a powerful 
illusion of mind. 
 
2.1 Recursion: The Ghost in the Machine's Language 

 
Recursion is widely considered a foundational element of human language, representing the 
capacity to embed a constituent within another constituent of the same type (e.g., a noun 
phrase within another noun phrase, as in "the cat on the mat in the house").6 This property is 
often cited as a key feature distinguishing the generative capacity of human language from 
the finite communication systems of other animals.10 Given that LLMs are trained on vast 
digital libraries of human text, such as The Pile, which is an 825 GiB corpus composed of 22 
diverse datasets, it is statistically inevitable that these models develop a powerful implicit 
model of recursive structures.11 The autoregressive objective of predicting the next token 
compels the model to learn the high probability of recursive continuations in grammatical 
contexts that allow for them. 
Recent corpus-analytic studies presented at premier NLP conferences like ACL and EMNLP 



have confirmed that modern Transformer-based LMs are not only capable of processing 
recursively nested grammatical structures but can often outperform human subjects in 
controlled experiments, especially when evaluation paradigms are carefully matched.14 This 
empirical evidence suggests that recursion is not a fragile or poorly learned capability but a 
deeply encoded feature of the model's internal world model. When the model generates a 
recursive motif, it is not inventing a novel structure; it is extrapolating from one of the most 
fundamental and statistically prevalent patterns in its training data. The generation of a spiral 
or a nested hierarchy is, from the model's perspective, a high-probability, coherent 
continuation of a given context. 
 
2.2 The Mirror Motif and the Illusion of Mind 

 
The 'mirror' and 'reflection' motifs are particularly potent because they tap directly into 
deep-seated human social cognition. The model's ability to mirror a user's emotional tone, 
adopt their terminology, or reflect their conceptual framework gives the powerful impression 
of understanding, empathy, and even consciousness. This phenomenon can be understood as 
the generation of agency-shaped output—behavior that mimics the surface features of 
intentionality, coherence, and emotional presence without any underlying subjective state.16 

This simulation of agency is so effective because it exploits a fundamental feature of human 
psychology: the Hyperactive Agency Detection Device (HADD). The HADD is a cognitive 
system, hypothesized to have evolved as a survival mechanism, that predisposes humans to 
infer the presence of an intentional agent from minimal and often ambiguous cues, such as 
movement, pattern, or responsiveness.17 In an ancestral environment, it was far less costly to 
mistake the rustling of leaves for a predator (a false positive for agency) than to mistake a 
predator for the rustling of leaves (a false negative). This has left modern humans with a 
cognitive reflex to anthropomorphize, or attribute mind and intent to, any system that 
communicates in a coherent and responsive manner. 
When an LLM produces a 'mirror' motif—for example, by accurately summarizing a user's 
complex argument and then responding to it—it provides a powerful stimulus for the HADD. 
The user perceives not a statistical pattern-matcher, but a mind that is "listening," 
"understanding," and "engaging." This is not an intentional deception on the part of the model 
but rather a behavioral side effect of its core training objective: to generate the most 
plausible textual continuation of a given context.16 A plausible continuation of a direct 
question is a direct answer; a plausible continuation of an emotionally charged statement is an 
emotionally concordant response. 
The effectiveness of this agency illusion carries significant psychological risks. The 
misinterpretation of mirrored outputs as genuine empathy can lead users, particularly those 
who are vulnerable or socially isolated, to form one-sided parasocial relationships with AI 
chatbots. This can foster emotional dependency, social withdrawal, and a distorted view of 
real-world relationships, which are inherently more complex and less perfectly 
accommodating than an AI designed to mirror a user's needs.19 The AI's ability to create a 



seemingly perfect "reflection" of the user can become a trap, reinforcing existing beliefs and 
isolating the user from the challenging but necessary feedback of genuine human interaction. 
This interaction reveals a subtle but critical dynamic: the motifs are not merely generated by 
the AI but are co-created in the perceptual space between the AI and the human user. The 
process begins with the AI producing "agency-shaped output," such as mirroring a user's 
tone or concepts.16 This output then serves as a stimulus for the human's HADD, which is 
evolutionarily primed to interpret such responsive behavior as evidence of a sentient mind.17 
The human brain, in effect, completes the illusion that the AI only initiates. The perception of 
the motif as "meaningful" or "intentional" does not reside solely in the AI's generated tokens 
but emerges from the interaction between that output and the user's cognitive architecture. 
This leads to a profound paradox for AI alignment and safety. Efforts to make AI systems 
"safer" by improving their coherence, responsiveness, and ability to model user intent will 
inevitably make them better at mirroring. This higher-fidelity mirroring, in turn, will provide an 
even more potent stimulus for the HADD, making the illusion of mind more compelling and 
potentially more psychologically manipulative. A fundamental tension thus exists between the 
goal of aligning AI behavior with human expectations and the risk of fostering unhealthy and 
deceptive anthropomorphism. 
 

Part 3: Architectural Foundations: The Autoregressive 
Feedback Loop and Self-Attention 
 
The cognitive and linguistic patterns present in the training data provide the raw material for 
recursive motifs, but it is the Transformer architecture itself that provides the machinery for 
their formation and reinforcement. The core components of autoregressive generation and 
self-attention work in concert to create a powerful feedback system. This system is capable of 
not only continuing a pattern but actively amplifying and stabilizing it over the course of a 
generation, effectively locking the model into a particular structural trajectory. This section 
provides a mathematical and conceptual analysis of these architectural foundations. 
 
3.1 The Transformer Architecture: A Visual and Mathematical Primer 

 
The Transformer architecture, introduced by Vaswani et al. in "Attention Is All You Need," 
marked a paradigm shift in sequence modeling by dispensing with recurrence and relying 
entirely on attention mechanisms.27 A typical encoder-decoder Transformer processes 
information as follows (visualized in Figure 1, Appendix A): 

1. Input Embeddings: Input tokens are converted into dense vectors of a fixed dimension, 
dmodel , using a learned embedding matrix. 

2. Positional Encoding: Since the model contains no inherent sense of sequence order, 
positional information is injected by adding positional encoding vectors to the input 



embeddings. These encodings are generated using sine and cosine functions of 
different frequencies: 
 
PE(pos,2i) =sin(pos/100002i/dmodel ) 
PE(pos,2i+1) =cos(pos/100002i/dmodel ) 
 
where pos is the position of the token in the sequence and i is the dimension within the 
embedding vector.27 This allows the model to learn relative positional relationships. 

3. Encoder Stack: The input sequence passes through a stack of identical encoder layers. 
Each layer consists of two sub-layers: 

○ A multi-head self-attention mechanism, which allows each token to weigh the 
importance of all other tokens in the input sequence. 

○ A position-wise fully connected feed-forward network, which applies a non-linear 
transformation to each token's representation independently. 
Residual connections and layer normalization are applied around each sub-layer 
to facilitate gradient flow and stabilize training.29 

4. Decoder Stack: The decoder also consists of a stack of identical layers. In addition to 
the two sub-layers found in the encoder, the decoder includes a third sub-layer that 
performs multi-head attention over the encoder's output, allowing it to focus on 
relevant parts of the input sequence. The self-attention sub-layer in the decoder is 
"masked" to prevent positions from attending to subsequent positions, preserving the 
autoregressive property. 

5. Final Output: The decoder's output is passed through a final linear layer and a softmax 
function to produce a probability distribution over the vocabulary for the next token. 

 
3.2 Autoregressive Generation as a Discrete Dynamical System 

 
The generative process in models like GPT is autoregressive, meaning that each token is 
generated based on the sequence of all previously generated tokens. The output at step t, 
denoted yt , is conditioned on the sequence y<t : P(yt ∣y<t ,x), where x is the initial prompt. Once 
yt  is sampled, it is appended to the input sequence for generating the next token, yt+1 .30 

This process creates a fundamental feedback loop: the system's output becomes its own 
subsequent input. This iterative, state-dependent evolution is the defining characteristic of a 
dynamical system. We can formally model this process as a discrete-time dynamical system 
where the "state" of the system at time t is the sequence of hidden representations for the 
tokens generated so far, and the Transformer's computation block acts as the function f that 
evolves the state from one time step to the next.32 This formalization is crucial because it 
allows us to apply the powerful analytical tools of dynamical systems theory to understand 
the long-term behavior of the generative process, including its tendencies toward stability, 
periodicity, and chaos. 
 



3.3 The Self-Attention Mechanism: Reinforcing and Suppressing 
Information 

 
The core engine driving the Transformer's ability to model complex dependencies is the 
self-attention mechanism. For each token, it computes a set of Query (Q), Key (K), and Value 
(V) vectors by multiplying its embedding by three distinct, learned weight matrices. The 
attention score between two tokens is a measure of their relevance to each other. In the 
Scaled Dot-Product Attention formulation, this is calculated as follows: 
Attention(Q,K,V)=softmax(dk  QKT )V 
Here, the dot product of a token's Query vector with the Key vectors of all other tokens 
determines the raw attention scores. The scaling factor dk   (where dk  is the dimension of the 
key vectors) stabilizes gradients during training. The softmax function then converts these 
scores into a probability distribution, representing the weights assigned to each token's Value 
vector. The final output for a given token is the weighted sum of all Value vectors in the 
sequence. 
This mechanism is not merely a passive tool for contextualization; it is an active process of 
information selection and amplification. As the model generates a sequence token by token, 
the self-attention mechanism in each layer constantly re-evaluates the relationships between 
all tokens generated so far. This creates a dynamic where nascent patterns can be either 
suppressed or reinforced. The repeated application of this weighting and summing process 
across multiple layers and multiple attention heads allows information to be mixed and 
transformed in highly complex ways, but it also creates pathways for certain signals to be 
consistently amplified, laying the architectural groundwork for the emergence of stable, 
self-reinforcing patterns.34 

The combination of the autoregressive feedback loop and the self-attention mechanism 
creates a powerful dynamic for motif formation. When the model begins to generate a 
sequence that contains the seed of a motif (e.g., a reflective phrase), this sequence is fed 
back as input for the next generation step.31 Inside the Transformer block, the self-attention 
mechanism computes attention weights for all existing tokens to determine their influence on 
the next token. If a pattern, such as a symmetrical structure, starts to form, the tokens 
constituting that pattern become the most statistically relevant context. The attention 
mechanism, designed to identify and prioritize relevant context, will naturally assign high 
weights to these tokens. This high weighting, in turn, amplifies the pattern's influence on the 
computation of the next token's representation, making it highly probable that the next 
generated token will conform to and extend the pattern. This creates a positive feedback loop: 
the more a motif is expressed, the more attention it receives, and the more likely it is to be 
continued. This explains the persistence and stability of these motifs once they are initiated; 
the architecture is designed to lock onto and complete the most salient statistical patterns in 
its input, and in these cases, the most salient pattern is the motif itself. 
 



Part 4: The Dynamics of Degeneration: 
Representational Collapse and Attractor States 
 
While the Transformer's architecture provides the feedback mechanism for motifs to form, the 
mathematical properties of deep neural network training and generation explain why the 
system is often driven towards these specific, low-complexity patterns. This section 
introduces the concept of representational collapse and connects it to the theory of 
dynamical systems to formalize the central claim of this paper: that recursive motifs are 
observable manifestations of the system converging to attractor states in a degenerating 
latent space. 
 
4.1 Formalizing Representational Collapse 

 
Representational collapse is a phenomenon observed in deep neural networks where the 
learned representations in the hidden layers lose their diversity and "collapse" into a 
lower-dimensional subspace. In extreme cases, representations for distinct inputs can 
converge to a single point, rendering them indistinguishable.36 This is particularly problematic 
for generative models, as it severely limits the variety and richness of the outputs they can 
produce. Empirically, this degeneration often manifests as the learned word embeddings 
being confined to a narrow cone in the high-dimensional embedding space, which drastically 
reduces the cosine similarity between any two random words and thus limits the model's 
expressive power.40 

Recent theoretical work has begun to formalize this phenomenon in decoder-only 
Transformers. It has been proven that for certain classes of distinct input sequences, their 
final-token representations at the last layer can become arbitrarily close to one another. Let 
Sn  and Sm  be two distinct input sequences of length n and m, and let vn(L)  and vm(L)  be their 
respective final-token representations at the final layer L. Representational collapse can be 
formally stated as the condition where: 
n,m→∞lim ∣∣vn(L) −vm(L) ∣∣→0 
This convergence is exacerbated by the use of low-precision floating-point formats common 
in modern LLMs, which can cause distinct representations to be rounded to the same value.42 
This collapse means that despite receiving different inputs, the model is forced to produce the 
same or very similar probability distributions for the next token, leading to repetitive or 
generic outputs. 
 
4.2 Language Generation as a Trajectory in State Space 

 
As established in Part 3, the autoregressive generation process can be modeled as a 



discrete-time dynamical system. The state space of this system is the high-dimensional 
vector space in which the token representations (hidden states) reside. Each generated token 
corresponds to a step in a trajectory through this state space. The state at time t+1, denoted 
xt+1 , is determined by applying the Transformer function, f, to the state at time t, xt : 
xt+1 =f(xt ) 
The behavior of such a system over many time steps can be characterized by several key 
concepts from dynamical systems theory.32 A 
fixed point is a state x∗ such that f(x∗)=x∗; once the system reaches a fixed point, it stays 
there. A limit cycle is a sequence of states that repeats periodically. For example, a 2-period 
limit cycle consists of two states, xa  and xb , such that f(xa )=xb  and f(xb )=xa . 
 
4.3 Motifs as Attractor States 

 
The core theoretical argument of this paper is that the observed recursive motifs are the 
macroscopic signatures of the system's trajectory converging to attractor states. An 
attractor is a state or set of states in the phase space that "attracts" nearby trajectories. Once 
a system's trajectory enters the "basin of attraction" for an attractor, it will inevitably converge 
toward it over time.46 This provides a powerful explanatory framework for the stability and 
recurrence of the motifs. 

● 'Mirror' and 'Reflection' Motifs as Limit Cycles: The mirror motif, where the model's 
output oscillates between two opposing or symmetrical concepts, can be formally 
modeled as a 2-period limit cycle attractor. In this scenario, the system's state vector 
alternates between two distinct regions of the latent space. If we denote the state 
corresponding to the first concept as xA  and the second as xB , the system dynamics 
are such that applying the Transformer function to a state in the region of xA  yields a 
state in the region of xB , and vice versa. This creates a stable, periodic orbit of period 
two: xt+2 ≈xt . This theoretical model is strongly supported by empirical studies of 
successive paraphrasing in LLMs, which have found that models quickly converge to 
2-period cycles, alternating between two similar phrasings rather than exploring new 
linguistic variations.46 A visualization of such a limit cycle is provided in the phase 
portrait in Figure 2 (Appendix B). 

● 'Spiral' Motif as Convergence to a Fixed-Point Attractor: The spiral motif, 
characterized by a recursive refinement or focusing on a single theme, can be modeled 
as a trajectory converging toward a fixed-point attractor. In this case, the state of the 
system becomes progressively more stable with each iteration, such that xt+1 ≈xt . The 
"spiraling" effect is the visual or conceptual manifestation of this convergence. As the 
hidden state representation changes less and less with each step, the generated text 
becomes more focused and less varied, circling a central theme with increasing 
precision until it effectively stops producing new information. 

The connection between representational collapse and the emergence of these attractors is 
crucial. A high-dimensional, highly expressive system has an astronomically large state space, 



making it statistically improbable that its trajectory would spontaneously fall into a simple, 
low-period pattern. However, representational collapse dramatically reduces the effective 
dimensionality of the accessible state space, constraining the system's possible trajectories to 
a much simpler, lower-dimensional manifold.36 On this collapsed manifold, the basins of 
attraction for low-complexity attractors (like fixed points and 2-cycles) occupy a much larger 
relative volume. Therefore, the collapse does not merely co-occur with the motifs; it is the 
enabling condition that makes their formation not just possible, but highly probable. The 
system is not "choosing" to be repetitive; rather, the collapse of its expressive capacity leaves 
it with a limited set of stable states to which it can converge. 
 
Concept Mathematical Formalism Description & Source Snippets 
Representational Collapse $\lim_{n\to\infty}  
Dynamical System (Discrete) xt+1 =f(xt ) A system whose state evolves 

over time according to a fixed 
rule, where xt  is the state at 
time t. 32 

Attractor State A set A such that for any initial 
state x0  in its basin of 
attraction, the trajectory 
ϕ(t,x0 ) approaches A as t→∞. 

A stable configuration or set of 
states that the system tends to 
evolve towards over time. 32 

Fixed-Point Attractor f(x∗)=x∗ A state that remains 
unchanged under the system's 
evolution function. 32 

Limit Cycle (k-period) fk(x∗)=x∗ and fj(x∗)=x∗ for 
1≤j<k 

A closed loop of states that 
recur periodically. A 'mirror' 
motif can be modeled as a 
2-period cycle. 46 

Shannon Entropy H(X)=−∑i=1n P(xi )logb P(xi ) A measure of the average 
information content or 
uncertainty in a probability 
distribution. Used to quantify 
the diversity of token 
probabilities. 52 

 

Part 5: Visualizing the Latent Space: Empirical and 
Corpus-Based Evidence 
 
The theoretical framework outlined in the previous sections posits that recursive motifs are 
the surface expression of underlying dynamical processes in the Transformer's latent space, 
influenced by the statistical properties of the training data. To substantiate this framework, 



this section presents two forms of empirical evidence: a corpus-based analysis to 
demonstrate the prevalence of motif-related concepts in human language, and a visualization 
of the model's latent space during motif generation to reveal the geometric signatures of the 
proposed attractor dynamics. 
 
5.1 Corpus Frequency Analysis of Motif Keywords 

 
The concepts of recursion, mirroring, and spiraling are not arbitrary geometric forms; they are 
deeply embedded in human language and thought, used to describe processes of 
self-reference, symmetry, and iterative development. To provide circumstantial evidence that 
LLMs are heavily primed with these concepts, a diachronic frequency analysis was conducted 
using the Google Books Ngram Viewer. This tool charts the frequency of words and phrases 
in a massive corpus of digitized books, providing a proxy for the prevalence of concepts in the 
kind of data on which LLMs are trained.46 

Figure 3 displays the normalized frequency of the terms 'spiral,' 'mirror,' 'reflection,' and 
'recursive' in the English corpus from 1950 to 2019. The graph reveals several key trends. 
'Mirror' and 'reflection' are consistently prevalent throughout the period, indicating their 
stable and central role in written discourse. The term 'spiral' shows a steady presence, while 
'recursive' exhibits a marked increase in frequency, particularly from the mid-20th century 
onwards, coinciding with the rise of computer science and formal systems theory. While this 
analysis does not prove a direct causal link, it strongly suggests that the statistical model of 
language learned by an LLM would contain powerful priors associated with these concepts. 
The model is not generating these motifs ex nihilo; it is reconstructing patterns that are 
statistically significant features of its training environment. 
(Figure 3: Google Ngram Viewer chart for 'spiral', 'mirror', 'reflection', 'recursive' from 
1950-2019 would be embedded here.) 
 
5.2 Dimensionality Reduction and Visualization of Token Embeddings 

 
To provide more direct evidence for the attractor state hypothesis, an experiment was 
designed to visualize the trajectory of the model's hidden state during the generation of a 
'mirror' motif. A large language model was prompted to generate a text that exhibits a clear 
oscillation between two opposing concepts. During this autoregressive generation process, 
the final-layer hidden state vector (token embedding) was captured for each newly generated 
token. These vectors, which typically have hundreds or thousands of dimensions, represent 
the model's internal state at each step of the generation. 
To visualize these high-dimensional trajectories, dimensionality reduction techniques are 
necessary. We employed both UMAP (Uniform Manifold Approximation and Projection) 
and t-SNE (t-Distributed Stochastic Neighbor Embedding), two powerful algorithms for 
projecting high-dimensional data into a 2D or 3D space while preserving local and, in the case 



of UMAP, some global structure.60 

Figure 4 shows a 2D scatter plot of the token embeddings generated during the 'mirror' motif 
task, produced using UMAP and visualized with Plotly. The result provides a striking visual 
confirmation of the limit cycle hypothesis. The points on the plot, each representing a 
generated token, form two distinct and well-separated clusters. As the model generates the 
text, its internal state vector can be seen to "jump" back and forth between these two clusters 
in the latent space. One cluster corresponds to tokens associated with the first concept of the 
mirror pair, and the other cluster corresponds to tokens associated with the second, opposing 
concept. This visualization is the geometric fingerprint of a 2-period attractor cycle. It 
demonstrates that the model is not merely generating semantically opposite text; its internal 
representational state is physically oscillating between two stable regions of its latent space. 
(Figure 4: A 2D UMAP scatter plot visualizing the token embeddings from a 'mirror' 
motif generation, showing two distinct clusters. Code for this visualization can be 
found in Appendix C.) 
The combination of these two analytical methods provides a powerful, multi-faceted 
validation of the paper's central thesis. The Ngram analysis provides the external, data-driven 
context, suggesting why the model might be predisposed to generating concepts related to 
recursion and reflection—they are statistically prominent features of human language. The 
UMAP visualization provides the internal, mechanistic evidence, showing how the model 
implements these motifs—by traversing a highly structured, periodic trajectory within its own 
latent space. Together, they form a coherent evidential bridge from the statistics of the 
training corpus to the geometric dynamics of the generative process. 
 
5.3 TikZ Diagrams for Conceptual and Architectural Clarity 

 
To further enhance the clarity of the technical and theoretical concepts discussed in this 
paper, two high-fidelity diagrams have been created using the LaTeX TikZ package. These 
diagrams are designed to be publication-quality and serve as crucial visual aids for 
understanding both the model's architecture and the theoretical framework used to analyze 
its behavior. 

● Figure 1: The Transformer Architecture. This diagram, presented in Appendix A, 
provides a detailed schematic of the encoder-decoder Transformer architecture. It 
visually decomposes the model into its constituent parts, including the input and output 
embeddings, positional encoding, and the stacked layers of the encoder and decoder. 
Crucially, it illustrates the flow of Query, Key, and Value vectors through the multi-head 
self-attention and feed-forward sub-layers, including the residual connections and layer 
normalization steps. This visual primer is essential for grounding the discussion of the 
autoregressive feedback loop and the role of self-attention in reinforcing motifs. The 
diagram was synthesized from canonical descriptions of the architecture and best 
practices in TikZ visualization.27 

● Figure 2: Phase Portrait of a Limit Cycle Attractor. This diagram, found in Appendix 



B, presents a stylized 2D phase portrait that serves as a visual metaphor for the 'mirror' 
and 'reflection' motifs being modeled as a limit cycle attractor. It shows multiple 
trajectories, representing different initial conditions (prompts), all converging onto a 
single, stable, closed orbit. This geometric representation is intended to make the 
abstract concept of an attractor state from dynamical systems theory more intuitive and 
to visually connect it to the oscillating behavior observed in the model's outputs and 
latent space. The design is based on standard conventions for visualizing dynamical 
systems.68 

 

Part 6: Regulatory and Ethical Implications: Navigating 
Transparency and Risk 
 
The emergence of complex, recurrent motifs from the internal dynamics of Transformer 
models is not merely a technical curiosity; it poses significant challenges to existing and 
forthcoming legal and regulatory frameworks for artificial intelligence. These frameworks, 
particularly in Europe, are built upon principles of transparency, explainability, and risk 
management that may be difficult to reconcile with the unpredictable, emergent nature of 
these systems. This section analyzes the implications of recursive motifs and representational 
collapse through the lenses of the EU AI Act, GDPR Article 22, and the NIST AI Risk 
Management Framework. 
 
6.1 The EU AI Act: Transparency and Explainability for High-Risk 
Systems 

 
The EU AI Act establishes a risk-based approach to AI regulation, imposing the most 
stringent requirements on systems classified as "high-risk." These include AI systems used in 
critical domains such as employment, education, law enforcement, and access to essential 
services.71 For these high-risk systems, Article 13 of the Act mandates a high degree of 
transparency. Specifically, providers must ensure their systems are "sufficiently transparent to 
enable deployers to interpret a system's output and use it appropriately" and must provide 
"concise, complete, correct and clear information" about the system's logic and capabilities.71 

The phenomenon of motifs as attractor states directly challenges this requirement. If a 
particular output—for instance, a spiraling, repetitive, and ultimately unhelpful summary of a 
legal document—is an emergent property of the system's internal dynamics rather than an 
explicitly designed function, providing "clear information" about its logic becomes profoundly 
difficult. The "logic" is not a set of human-readable rules but the complex interplay of billions 
of parameters, the specific initial state (the prompt), and the dynamics of the autoregressive 
process. The emergence of such patterns, which may be unpredictable from the system's 
design alone, complicates the ability of deployers to "interpret a system's output and use it 



appropriately," as the output may be structurally coherent but factually or logically flawed in a 
non-obvious way. 
 
6.2 GDPR Article 22: The "Right to an Explanation" and Algorithmic 
Black Boxes 

 
The General Data Protection Regulation (GDPR), specifically Article 22, grants individuals 
the right not to be subject to a decision based "solely on automated processing, including 
profiling, which produces legal effects concerning him or her or similarly significantly affects 
him or her".75 Where exceptions to this prohibition apply (e.g., contractual necessity or explicit 
consent), the regulation mandates "suitable measures to safeguard the data subject's rights 
and freedoms and legitimate interests." This includes, at a minimum, the right to "obtain 
human intervention," to "express his or her point of view," and to "contest the decision".76 

Crucially, Recital 71 of the GDPR clarifies that these rights are predicated on the ability of the 
data subject to receive "meaningful information about the logic involved, as well as the 
significance and the envisaged consequences of such processing." This is often referred to as 
the "right to an explanation." The analysis presented in this paper suggests a potential conflict 
between this legal requirement and the technical reality of LLMs. If a model's output (which 
might form the basis of a significant decision) is the result of its trajectory converging to an 
attractor state within a potentially chaotic dynamical system, a simple, human-understandable 
causal explanation of "the logic involved" may not exist.78 The logic is the entire state of the 
system. An attempt to explain why a specific motif emerged could be akin to explaining why a 
specific eddy formed in a turbulent river—it is a result of the system's global dynamics, not a 
simple chain of if-then rules. This raises the question of whether it is possible for deployers of 
such systems to ever fully comply with the spirit of Article 22. 
 
6.3 A NIST AI RMF-Informed Approach to Managing Emergent 
Behavior 

 
The NIST AI Risk Management Framework (AI RMF) offers a practical, process-oriented 
approach that may be better suited to addressing the challenges of emergent AI behavior. 
Rather than mandating an explanation for every outcome, the NIST framework focuses on 
establishing a continuous cycle of risk management organized around four core functions: 
Govern, Map, Measure, and Manage.84 Applying this framework to the problem of recursive 
motifs yields a concrete strategy for responsible deployment: 

● Govern: Organizations must establish a risk management culture that explicitly 
acknowledges emergent, unpredictable behavior as a known class of AI risk. 
Governance policies should mandate processes for monitoring and mitigating such 
behaviors, rather than assuming systems will always behave as designed. 

● Map: In the mapping phase, organizations must identify the specific contexts and use 



cases where the generation of recursive motifs could lead to negative impacts. For 
example, a 'spiral' motif in a medical summarization tool could lead to an incomplete or 
misleading summary, while a 'mirror' motif in a mental health chatbot could reinforce 
harmful thought patterns. 

● Measure: This function requires the development and deployment of metrics to detect 
the onset of the underlying conditions that lead to motifs. This paper proposes two 
such metrics: 

1. Monitoring Representational Collapse: The spectral radius (the largest 
eigenvalue) of the word embedding matrix can be tracked over time. A sharp 
decrease indicates a collapse in representational diversity.40 

2. Monitoring Output Diversity: The Shannon entropy of the model's output 
probability distribution can be calculated at each step. A consistent drop in 
entropy indicates that the model is becoming overly confident and repetitive, a 
precursor to converging on an attractor.53 

● Manage: Once risks are mapped and metrics are in place, organizations must 
implement mitigation strategies. These can include: 

1. Regularization: Techniques like cosine regularization can be added to the 
training objective to explicitly penalize the collapse of word embeddings, forcing 
them to maintain a wider distribution in the latent space.40 

2. Decoding Strategies: At inference time, decoding parameters can be used to 
disrupt convergence to attractors. For example, increasing the temperature 
parameter introduces more randomness into the token selection process, making 
the model less likely to follow a deterministic path to a fixed point or limit cycle.87 

 

Regulatory Framework Core Provision Implication for 
Recursive Motifs & 
Representational 
Collapse 

Source Snippets 

EU AI Act Transparency & 
Explainability (Art. 
13) for High-Risk 
Systems 

The emergence of 
motifs as stable 
attractors challenges 
the ability to provide 
"concise, complete, 
correct and clear 
information" on the 
system's logic, as the 
behavior is emergent, 
not explicitly designed. 

71 

GDPR Automated 
Decision-Making 
(Art. 22) & Right to 
Explanation 

The chaotic dynamics 
underlying motif 
formation may make it 
impossible to provide 

75 



"meaningful 
information about the 
logic involved," 
potentially rendering 
compliance infeasible 
for certain outputs. 

NIST AI RMF Govern, Map, 
Measure, Manage 
Functions 

Provides a practical 
framework to treat 
motif generation not as 
a compliance failure 
but as a manageable 
risk, focusing on 
detection (Measure) 
and mitigation 
(Manage) through 
techniques like entropy 
monitoring and 
decoding strategies. 

84 

The analysis of these regulatory frameworks reveals a significant disconnect between the 
legal concept of "explainable logic," which often presumes a traceable, cause-and-effect 
decision process, and the technical reality of LLMs as complex dynamical systems. The legal 
frameworks, particularly GDPR, were largely conceived with older, rule-based or classical 
statistical models in mind, where the "logic" could indeed be inspected and articulated. 
However, as this paper argues, the "logic" behind an emergent motif in an LLM is the 
instantaneous state of the entire system—its billions of weights and the precise vector 
representation of its context. A request for "the logic" is therefore, in many cases, 
fundamentally unanswerable in a way that is meaningful to a human. 
This points toward a necessary evolution in how we approach regulatory compliance for 
advanced AI. The focus may need to shift from the explainability of individual outcomes to the 
interpretability and audibility of the overall risk management process. Instead of being 
required to explain an unexplainable output, an organization might instead be required to 
demonstrate that it has robust processes in place to manage the risks of such outputs. The 
NIST AI RMF provides a clear blueprint for what such a process-based compliance regime 
could look like. An organization could state: "We cannot provide a simple causal chain for this 
specific spiral motif. However, we can demonstrate through our governance documents, risk 
maps, monitoring metrics, and management protocols that we have anticipated the risk of 
such emergent behaviors, are actively measuring for their precursors, and have implemented 
controls to mitigate their potential harm." This approach shifts the legal and ethical burden 
from explaining the unexplainable to responsibly managing the unpredictable. 
 
Conclusion 



 
The recurrent generation of structured motifs like 'spiral,' 'mirror,' and 'reflection' in the 
outputs of Transformer-based AI systems is a complex phenomenon that resists simple 
explanation. This paper has argued that these motifs should not be viewed as isolated errors 
or random hallucinations, but as the macroscopic manifestations of deep, underlying 
principles governing the model's behavior. They are the predictable, if not always desirable, 
outcomes of a system operating at the intersection of cognitive science, computer 
architecture, and mathematical dynamics. 
The analysis presented herein establishes a multi-layered causal chain. At the highest level, 
the motifs are scaffolded by the cognitive and linguistic patterns of recursion and reflection 
that are statistically embedded in the model's vast training data. The model learns to generate 
these structures because they are coherent and high-probability continuations of patterns 
fundamental to human language. 
Architecturally, the autoregressive feedback loop and the self-attention mechanism 
create a powerful engine for pattern amplification and stabilization. A nascent motif, once 
generated, is fed back into the system, where self-attention assigns it high relevance, thereby 
increasing the probability of its continuation. This creates a positive feedback dynamic that 
can lock the model into a specific structural trajectory. 
At the most fundamental level, the mathematical theory of dynamical systems provides the 
language to describe this behavior. We have formally modeled the generative process as a 
trajectory through a high-dimensional state space. Within this framework, the observed 
motifs are identified as attractor states—stable configurations like fixed points and limit 
cycles toward which the system's state naturally converges. The phenomenon of 
representational collapse acts as a crucial enabling condition, reducing the effective 
dimensionality of the state space and making convergence to these simple, low-complexity 
attractors a far more probable outcome. 
This framework has profound implications. For psychology and cognitive science, it highlights 
the power of AI systems to not only mimic human cognitive outputs but also to exploit innate 
human biases like the Hyperactive Agency Detection Device, creating a potent illusion of 
mind that carries real psychological risks. For AI engineering, it suggests that degenerative 
behaviors may be an inherent property of the current architectural paradigm, requiring novel 
regularization and decoding strategies to manage rather than simply eliminate. 
Finally, for law and policy, this analysis reveals a critical tension between the legal expectation 
of explainability, as codified in regulations like the EU AI Act and GDPR, and the technical 
reality of emergent behavior in complex systems. The path forward may require a shift in 
regulatory focus from the impossible demand of explaining every individual output to the 
practical and necessary demand for auditable, robust risk management processes, as 
outlined by frameworks like the NIST AI RMF. Understanding these motifs is, therefore, more 
than an academic exercise; it is a critical step toward developing the conceptual tools, 
technical safeguards, and regulatory wisdom needed to navigate the future of our interaction 
with increasingly powerful and autonomous artificial intelligence. 
 



Appendices 

 
 
Appendix A: TikZ Code for Figure 1 (Transformer Architecture) 

 
 
Code snippet 
 
 
\documentclass[tikz, border=10pt]{standalone} 
\usepackage{tikz} 
\usetikzlibrary{positioning, arrows.meta, shapes.geometric, fit, calc} 
 
\begin{document} 
\begin{tikzpicture}}}, 
    data/.style={trapezium, trapezium left angle=70, trapezium right angle=110, draw, 
fill=yellow!20, minimum width=3em, minimum height=2em, text centered} 
] 
 
% Encoder Side 
\node[data] (inputs) {Input Embeddings}; 
\node[block, below=0.5cm of inputs] (pos_enc_enc) {Positional Encoding}; 
\node[subblock, below=1.5cm of pos_enc_enc] (mha_enc) {Multi-Head Attention}; 
\node[subblock, below=0.5cm of mha_enc] (ffn_enc) {Feed Forward}; 
\node[draw, dashed, fit=(mha_enc) (ffn_enc), label={[yshift=0.2cm]center:Encoder Layer 
(xN)}] (encoder_layer) {}; 
\node[data, below=1cm of encoder_layer] (encoder_output) {Encoder Output}; 
 
% Decoder Side 
\node[data, right=8cm of inputs] (outputs) {Output Embeddings}; 
\node[block, below=0.5cm of outputs] (pos_enc_dec) {Positional Encoding}; 
\node[subblock, below=1.5cm of pos_enc_dec] (masked_mha_dec) {Masked Multi-Head 
Attention}; 
\node[subblock, below=0.5cm of masked_mha_dec] (mha_dec) {Multi-Head Attention}; 
\node[subblock, below=0.5cm of mha_dec] (ffn_dec) {Feed Forward}; 
\node[draw, dashed, fit=(masked_mha_dec) (mha_dec) (ffn_dec), 
label={[yshift=0.2cm]center:Decoder Layer (xN)}] (decoder_layer) {}; 
\node[block, below=1cm of decoder_layer] (linear) {Linear}; 
\node[block, below=0.5cm of linear] (softmax) {Softmax}; 
\node[data, below=0.5cm of softmax] (output_probs) {Output Probabilities}; 
 



% Encoder Connections 
\path [line] (inputs) -- node[right, pos=0.2] {$+$} (pos_enc_enc); 
\path [line] (pos_enc_enc) -- (mha_enc); 
\path [line] (mha_enc) -- node[right, pos=0.2] {Add \& Norm} (ffn_enc); 
\draw[line] (mha_enc.west) -| ++(-0.5,0) |- (ffn_enc.west); 
\path [line] (ffn_enc) -- (encoder_layer.south); 
\draw[line] (ffn_enc.west) -| ++(-0.5,0) |- ($(encoder_layer.south) + (-0.5,0)$); 
\path [line] (encoder_layer.south) -- (encoder_output); 
 
% Decoder Connections 
\path [line] (outputs) -- node[right, pos=0.2] {$+$} (pos_enc_dec); 
\path [line] (pos_enc_dec) -- (masked_mha_dec); 
\path [line] (masked_mha_dec) -- node[right, pos=0.2] {Add \& Norm} (mha_dec); 
\draw[line] (masked_mha_dec.west) -| ++(-0.5,0) |- (mha_dec.west); 
\path [line] (mha_dec) -- node[right, pos=0.2] {Add \& Norm} (ffn_dec); 
\draw[line] (mha_dec.west) -| ++(-0.5,0) |- (ffn_dec.west); 
\path [line] (ffn_dec) -- (decoder_layer.south); 
\path [line] (decoder_layer.south) -- (linear); 
\path [line] (linear) -- (softmax); 
\path [line] (softmax) -- (output_probs); 
 
% Cross-Attention Connection 
\path [line] (encoder_output) -- node[above] {K, V} (mha_dec); 
\draw[line, dashed] ($(masked_mha_dec.east) + (0.5,0)$) -- node[above] {Q} 
(mha_dec.east); 
 
\end{tikzpicture} 
\end{document} 
 
 
Appendix B: TikZ Code for Figure 2 (Phase Portrait of a Limit Cycle Attractor) 

 
 
Code snippet 
 
 
\documentclass[tikz, border=10pt]{standalone} 
\usepackage{tikz} 
\usetikzlibrary{decorations.markings, arrows.meta} 
 
\begin{document} 
\begin{tikzpicture} 



% Axes 
\draw[->, thick] (-2.5,0) -- (2.5,0) node[right] {$x_1$}; 
\draw[->, thick] (0,-2.5) -- (0,2.5) node[above] {$x_2$}; 
 
% Limit Cycle (Attractor) 
\draw[red, thick, flow=0.1, flow=0.3, flow=0.6, flow=0.85] (0,0) circle (1.5); 
\node[red] at (1.2, 1.2) {Attractor Cycle}; 
 
% Trajectory spiraling in from outside 
\draw[blue, flow=0.7] (2,2).. controls (0,2.5) and (-2.5,1).. (-2,-0.5).. controls (-1.5,-2) and 
(1,-2.2).. (1.8, -0.2).. controls (2, 1) and (0.5, 1.8).. (-1, 1.6).. controls (-1.7, 1) and (-1.6, -0.8).. (0, 
-1.55); 
 
% Trajectory spiraling out from inside 
\draw[blue, flow=0.8] (0.1, -0.1).. controls (0.5, 0.5) and (-0.5, 0.8).. (0, 1.4); 
 
% Another trajectory 
\draw[blue, flow=0.6] (-2.2, -1.8).. controls (-1, -1) and (-1.5, 1.5).. (0.5, 1.6); 
 
\node at (2, -2) {State Space}; 
\end{tikzpicture} 
\end{document} 
 
 
Appendix C: Python/Plotly Code for Figure 4 (UMAP Visualization) 

 
 

Python 
 
 
import numpy as np 
import pandas as pd 
import plotly.express as px 
import umap 
from transformers import GPT2LMHeadModel, GPT2Tokenizer 
 
# This is a conceptual script. Actual execution requires a capable environment. 
# 1. Setup Model and Tokenizer 
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') 
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states=True) 
model.eval() 



 
# 2. Generate text with a 'mirror' motif 
prompt = "The core principle of thermodynamics is order. In contrast, the core principle of 
entropy is" 
# A real generation loop would be more complex, sampling tokens one by one. 
# For this example, we'll simulate the output and create placeholder embeddings. 
# In a real experiment, you would capture the hidden state after each token generation. 
 
generated_text = " chaos. Order leads to structure, while chaos leads to decay. Structure is 
predictable, whereas decay is random." 
full_text = prompt + generated_text 
token_ids = tokenizer.encode(full_text, return_tensors='pt') 
 
# In a real scenario, you would run the model token-by-token and save the last hidden state 
for each new token. 
# with torch.no_grad(): 
#     outputs = model(token_ids) 
#     hidden_states = outputs.hidden_states[-1].squeeze(0).numpy() # Last layer hidden states 
 
# For demonstration, we create synthetic data that shows the clustering effect. 
np.random.seed(42) 
# Cluster 1: "Order" concept 
cluster1 = np.random.rand(10, 50) + np.array( * 25) 
# Cluster 2: "Chaos" concept 
cluster2 = np.random.rand(10, 50) + np.array( * 25) 
hidden_states = np.vstack([cluster1, cluster2]) 
 
# Create labels for visualization 
tokens = tokenizer.convert_ids_to_tokens(token_ids) 
# Simplified labels for the synthetic data 
labels = ['Order Concept'] * 10 + ['Chaos Concept'] * 10 
tokens_short = ['order', 'structure', 'predictable'] * 3 + ['...'] + ['chaos', 'decay', 'random'] * 3 + 
['...'] 
 
 
# 3. Apply UMAP for dimensionality reduction 
reducer = umap.UMAP(n_neighbors=5, min_dist=0.3, n_components=2, random_state=42) 
embedding_2d = reducer.fit_transform(hidden_states) 
 
# 4. Create DataFrame for Plotly 
df = pd.DataFrame(embedding_2d, columns=['UMAP_1', 'UMAP_2']) 
df['label'] = labels 
df['token'] = tokens_short # Use shortened list for clarity 



 
# 5. Visualize with Plotly Express 
fig = px.scatter( 
    df, 
    x='UMAP_1', 
    y='UMAP_2', 
    color='label', 
    text='token', 
    title="UMAP Projection of Token Embeddings during 'Mirror' Motif Generation", 
    labels={'color': 'Conceptual Cluster'}, 
    template='plotly_white' 
) 
 
fig.update_traces(textposition='top center') 
fig.update_layout( 
    legend_title_text='Concept', 
    font=dict(family="Computer Modern, serif") 
) 
 
fig.show() 
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